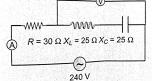
EW STANDARD ACADE


Date : 29-07-24

 $CLASS: 12^{TH} JEE$

Time: 3 HRS

PHYSICS

- 1. An LCR circuit contains $R = 50 \Omega, L = 1$ mH and C-0.1 μF . The impedance of the circuit will be minimum for a frequency of
- 2. Reactance of a capacitor of capacitance CμF for ac frequency $\frac{400}{\pi}$ Hz is 25 Ω. The value C is
- 3. In a LCR circuit having L = 8.0 henry, C = $0.5 \ \mu\text{F}$ and R = 100 ohm in series. The resonance frequency in per second is
- 4. In the circuit shown in figure, neglecting source resistance the voltmeter and ammeter reading will respectively, will be

- 5. Which is more dangerous in use : ac or dc? Explain, why.
- 6. The frequency of ac source is doubled. How do R, X_L and X_C get affected?
- 7. Distinguish between resistance, reactance and impedance for an ac circuit.
- 8. The instantaneous current and voltage in an ac circuit are given by $I = 10 \sin \sin t (in A)$ and $E = 200 \sin 300$

t (in V) What is the average power dissipated in the circuit?

- 9. What do you mean by power factor? On what factors does it depend?
- 10. L, C and R represent physical quantities inductance, capacitance and resistance respectively. The combination representing dimension of frequency is?

CHEMISTRY

1. Explain the geometry & shape of the following (a) $[Fe(CN)_6]^{4-}$

- [SbF₅]²⁻ 2. Write the difference between inner orbital octahedral and outerorbital octahedral complexes.
- 3. Find the magnetic moment and magnetic nature of the following

(a)
$$[NiCl_4]^2$$
 (b) $[Ni(CN)_4]^2$

- 4. Arrange the following in correct Increasing order of magnetic moment (a) $[Fe(CN)_6]^{4-}$ $[CoCl_4]^{2-}$
 - (c) $[MnCl_4]^{2-}$
- 5. $PtCl_4.6H_2O$ on reaction with AgNO₃ forms 2 mol of AgCl (white ppt.) per mol of the PtCl4.6H₂O. What is complex? Give its Werner;s representation.
- 6. Both $Ni(CO)_4$ and $NiCl_4^{2-}$ possess sp³ hybridization but they differ in their magnetic behavior. Explain.
- 7. $[Fe(CN)_6]^{4-}$ is diamagnetic while $[FeF_6]^{4-}$ is strongly paramagnetic .why?
- 8. $[Co(NH_3)_6]^{3+}$ and $[CoF_6]^{3+}$, both are complexes of Co(III), but[Co(NH₃)₆]³⁺ is diamagnetic while $[CoF_6]^{3-}$ is paramagnetic with moment 4.90B.M., Explain.
- 9. $Mn^{2+}(aq)$ ion is light pink coloured while $[Mn(CN)_6]^{4-}$ is blue in colour. Explain. 10. $[Co(H_2O)_4]^{2+}$, $[Co(Cl)_4]^{2-}$ and $[Co(DMG)_2]$
- are complexes of Co(II) but magnetic moment of $[Co(H_2O)_4]^{2+}$ and $[Co(Cl)_4]^{2-}$ is higher (3.87B.M) than $[Co(DMG)_2].(\mu =$ 1.73 B. M.) Explain.

MATHS

- 1. If $f(x) = 2x + \cot^{-1}x + \log(\sqrt{1 + x^2} x)$, then prove that f(x) is increasing function for real values of x.
- 2. Show that the function given by f(x) =3x+17 is strictly increasing on R.

SEMRI KOTHI, SUPER MARKET, RAEBARELI MOBILE NUMBER 9792972355

- 3. Find the values of 'a' for which the function $(a+2)x^3 - 3ax^2 + 9ax - 1$ decreases monotonically throughout for all real x.
- 4. Let g'(x) > 0 and $f'(x) < 0 \forall x \in R$ then prove that g(f(x+1)) < g(f(x-1)).
- 5. Find the absolute maximum value and the absolute minimum value of the following functions in the given intervals:

 $f(x) = 4x - \frac{1}{2}x^2, x \in \left[-2, \frac{9}{2}\right]$

- 6. Find the maximum value of $f(x) = \frac{x}{1+4x+x^2}$. 7. If $y = a \log_e |x+1| + b(x+1)^2 + x$ has its extremum value 4 at x = 0, then find (a,b).
- 8. Find the interval in which $f(x) = 3\cos^4 x +$ $10\cos^3 x + 6\cos^3 x - 3$ decreases is $x \in [0, \pi]$.
- 9. If the function $f(x) = ax e^{-bx}$ has a local maximum at the point(2,10) then find the values of *a* and *b*
- 10. Find the range of function $f(x) = x^4 - 14x^2 + 24x - 3.$

SEMRI KOTHI, SUPER MARKET, RAEBARELI MOBILE NUMBER 9792972355

RAEBAY